
/*

This shows you how to use other cogs.

What you need to do is

1. Create a function

2. Send the function to another cog to run but store a pointer to the cog.

3.Stop the other cog (using the pointer you stored in step 2).

(Stopping the other cog will also release

the memory space it is using.)

*/

#include "simpletools.h" // Include simple tools

// here is the function to be run in another cog

blink()

{

while(1)

{

high(27);

pause(500);

low(27);

pause(500);

} //end while

} // end blink

int main()

{

/* send the function to a new cog

store the cog info in a variable so it can be stopped

&blink is the address of the function, 10 is how much stack space to

allocate.

blinker is a pointer variable to use when stopping the cog.

*/

int *blinker =cog_run(&blink,10);

pause(8000); //run for a while or do other stuff here

cog_end(blinker); // then stop the cog and release the memory

}

Rules for cog_run:

The cog_run function itself needs two parameters:

 &function, which is the address of the function you want to

launch (&blink in this example)

 stackSize, a value to set aside additional memory called

stack space for the cog to perform its computations (10 in

this example means a stack space of 10 32-bit memory

locations. It is used for performing calculations while

executing the instructions in the blink code block.).

A function launched with cog_run:

 Can not require parameters passed to it (use global variables,

if needed)

 Can not return a value (again use global variables if needed)

 Should not contain a print, scan, or other function call that

uses the SimpleIDE Terminal, unless your program is going

to specifically manage that with additional functions.

Stack Size - how much? 10 is the bare minimum value you

would want to use for the stackSize parameter. If you were to add

more instructions to the blink function's code block, you would

need to increase it. Add 1 for every local variable used, 2 for each

function called, and 1 for each parameter and each return value

used by the functions called.

